

TEACHING PLAN

BUILDING ENGINEERING VOCATIONAL EDUCATION (BEVE) STUDY PROGRAM CIVIL ENGINEERING DEPARTMENT, FACULTY OF ENGINEERING, UNIVERSITAS NEGERI PADANG

UNP					CRE	DITS		VERSI			
	COURSE	CODE		COURSE CLUSTER	Theo	Prac	SEM	ON			
					ry	tice 4	3	1			
Lecturer in Charge					1	l Prop					
Lecturer in Charge		<u> </u>		P., S.Pd., M.Pd.T	,	Lecture	r in Cha	uge			
			NIP. 19900	08142019032015							
								, M.Pd.T			
			_		NIP	. 19900	8142019	032015			
Remarks		Dean of Facul Engineerin		Head of Civil Engineering Department	C	oordina	ntor of B	BEVE			
		Du Eshari Disal M	IDJ MIT	Fairel Ashar Dh D	D.,	. D	D. J.,	MCA			
		<u>Dr. Fahmi Rizal, M</u> NIP. 19591204198		<u>Faisal Ashar, Ph.D.</u> NIP. 19750103 200312 1001			n Body, .03 1985				
Program Learning	Program Learning Outcome	s (PLO)									
Outcomes				ering Vocational Education study pr							
				natics, Natural sciences) and other r							
				Engineering Vocational Education	in carr	ying ou	it profes	sional			
	work in their respective	` _		C /			11 .	.1			
			implemen	t basic mathematical concepts to so	lve varı	ous pro	oblems 1	n the			
	field of building eng	understanding and can implement basic concepts of physics and chemistry (natural sciences) in the fi									
	of building engineer										
			lement the	basic principles of basic engineering	ng (mec	hanics,	enginee	ering			
	drawings, materials				- `	ŕ	Č	J			
	2. The ability to think criti	k critically and creatively in identifying, formulating, problem solving, evaluating various problems									

the field of Building Engineering Vocational Education with the most appropriate and effective scientific method (Engineering analysis, investigations and assessment).

- 2.1. Able to identify various technical problems in the field of building engineering
- 2.2. Able to analyze various technical problems in the field of building engineering
- 2.3. Able to evaluate various technical problems in the building sector
- 2.4. Able to communicate Engineering Analysis, Investigation and Assessment materials to students / training.
- 3. The reliable ability in designing, implementing and supervising engineering design works.
 - 3.1. Able to realize work drawings in collaboration with various related parties.
 - 3.2. Able to manage building engineering work by paying attention to environmental, social, health and safety aspects.
 - 3.3. Able to supervise the implementation of building engineering work
- 4. The reliable ability to design, implement and evaluate the learning process in Building Engineering Vocational Education (Education design).
 - 4.1. Able to design curriculum and learning process in the field of building engineering.
 - 4.2. Able to implement, control, evaluate and improve the quality of the learning process
 - 4.3. Able to develop effective, efficient, and attractive learning media.
- 5. The ability to adapt and innovate to the development of science and technology and implement it into educational goals and professional work by considering possible non-technical risks (Engineering practice).
 - 5.1. Able to innovate and develop technology in the field of building engineering by considering social, economic and environmental aspects.
 - 5.2. Able to analyze environmental conditions in the planning, implementation and supervision of buildings.
 - 5.3. Implement information technology and computers into the planning, implementation, and supervision processes of buildings.
- 6. Social and managerial competence, working together, communicating effectively, having entrepreneurial character, having an environmental perspective and being aware of the importance of lifelong learning (transferable and soft skills).
 - 6.1. Able to work creatively, innovatively, collaboratively, be careful, responsible, responsive to environmental changes.
 - 6.2. Have curiosity, think critically, are open-minded, and objective.
 - 6.3. Able to communicate effectively and work together in a team work.

Course Learning

Course Learning Outcomes (CLO): Concrete Technology

Outcomes								
	Course LO	PLO						
	1. Able to properly use unit quantities that are generally used in the civil							
	engineering field							
	1. Able to explain the process of the formation of limestone and gypsum							
	2. Able to calculate various density and relative density of various building materials which are							
	generally used in civil engineering							
	3. Able to explain basic concepts of pressure.							
	4. Able to explain the basic concepts of stress and strain							
	5. Be able to explain the basic concepts of thermal comfort which include temperature, relative humidity and air flow (ventilation).							
	6. Be able to explain the basic concepts of natural and artificial lightin							
	7. Be able to explain the basic concepts of acoustics							
Course Description	This course provides knowledge and application of the proper use of units, especially in the field of or							
	artificial lighting, and the basics of acoustics. in building design and able to cooperate, be honest, discipl communicate well.	ineu, responsible, ethical and						
Literature	Main:							
	1. Endarko, et al. (2008). Buku ajar fisika SMK Teknologi. Diknas : Jakarta.							
	2. Tri Widodo.(2009). Fisika untuk SMA / MA kelas 10. Diknas : Jakarta.							
	3. Brown, T. (). Basic wood properties							
	4. Pohl, J. (2011). Building science concepts and application. California. A John Wiley & Sons:							
	5. Prasasko, S. (2004). Fisika Bangunan. Andi Offset: Yogyakarta.							
	6. BSN. (2001). Tata cara perancangan sistem pencahayaan alami pada bangunan gedung.							
	6. BSN. (2001). Tata cara perancangan sistem pencahayaan alami pada bangunan gedung. 7. BSN. (2001). Tata cara perancangan sistem pencahayaan buatan pada bangunan gedung							
	7. BSN. (2001). Tata cara perancangan sistem pencahayaan buatan pada bangunan gedung							
Teaching Media								
Teaching Media	7. BSN. (2001). Tata cara perancangan sistem pencahayaan buatan pada bangunan gedung 8. Egan, M, D. (2000).: McGgraw Hill: New York. Software: Hardware:							
	7. BSN. (2001). Tata cara perancangan sistem pencahayaan buatan pada bangunan gedung 8. Egan, M, D. (2000).: McGgraw Hill: New York. Software: Hardware: Computer, LCD Projector and White Board							
Teaching Media Team Teaching Assessment	7. BSN. (2001). Tata cara perancangan sistem pencahayaan buatan pada bangunan gedung 8. Egan, M, D. (2000).: McGgraw Hill: New York. Software: Hardware:							

TEACHING MATERIAL

Week	Expected Competency	Study Material	Teaching Method and Strategy	Assignment	Assessment Criteria/ Indicator	Reference
(1)	 Understanding the definition of quantities and units. Understanding various units used in the civil engineering field. Able to properly use various units used in the civil engineering field. 	Quantities and Units	LectureDemonstrationDiscussionQuestions and answers	Quiz	Attitude Knowledge	RU No. 1 No. 2
(2)	Able to understand and perfor m measurement practicu m	Quantities and units	LectureDemonstrationDiscussionQuestions and answers	-	1. Atti tude Knowledge	RU No. 1 No. 2
(3)	1. Able to understand the definition of density of b uilding materi als . 2. Capable of Calculating the mass of the type of materials of building .	Density and Relative Density	- Lecture - Demonstration - Discussion - Questions and answers	Quiz	1. Atti tude Knowledge	RU No. 3 No. 4

Week	Expected Competency	Study Material	Teaching Method and Strategy	Assignment	Assessment Criteria/ Indicator	Reference
	Able to calculate the relative d ensity of building materia ls		37			
(4)	Being able to understand and perfor m practical mass types an d mass types of relative	Density and Relative Density	 Lecture Demonstration Discussion Questions and answers Practicum 	-	1. Atti tude Knowledge	RU No. 3 No. 4
(5)	1. Able to understand the definition of pressure 2. Able to complete pressure training	Pressure	- Lecture - Demonstration - Discussion - Questions and answers - Practicum	Quiz	1. Atti tude Knowledge	RU No. 1
	Able to understand and do practicum					
(6)	1. Being able to understand the definition of voltage tap, the voltage pull, and tension shear. 2. Being able to calculate the amount of stress is normal, tensile	Stress and Strain	 Lecture Demonstration Discussion Questions and answers 	Quiz	1. Atti tude Knowledge	RU No. 1

Week	Expected Competency	Study Material	Teaching Method and Strategy	Assignment	Assessment Criteria/ Indicator	Reference
	, and shear . 3. Able to understand the definition of strain Be able to calculate the amount of strain					
(7)	1. Able to understand and summarize the differences between the various types of heat propagation. Able to calculate the amount of heat entering the building and draw the temperature distribution line.	Thermal comfort	- Lecture - Demonstration - Discussion - Questions and answers	Quiz	1. Atti tude Knowledge	RU No. 4 No. 5
(8)	Mid-Semester Exam		1			1
(9)	M ampu understand and m enentukan relative humidity	Thermal comfort	LectureDemonstrationDiscussionQuestions and answers	Quiz	1. Atti tude Knowledge	RU No. 4 No. 5
(10)	Able to understand and explain the process of air flow	Thermal comfort	LectureDemonstrationDiscussionQuestions and answers	Quiz	1. Atti tude Knowledge	RU No. 6 No. 7
(11)	 Able to understand and explain 	Natural and Artificial Lighting	- Lecture - Demonstration - Discussion	Quiz	1. Atti tude Knowledge	RU No. 6 No. 7

Week	Expected Competency	Study Material	Teaching Method and Strategy	Assignment	Assessment Criteria/ Indicator	Reference
	the components of daylight lighting factors, design sky, sky factors, measuring points and effective light holes. Calculates the magnitude of the sky factor at a		- Questions and answers			
(12)	point in the room 1. Able to understand and explain the relationship I, F and E. Calculate E at the point that the light source produces in the form of a point	Natural and Artificial Lighting	- Lecture - Demonstration - Discussion - Questions and answers	Quiz	1. Atti tude Knowledge	RU No. 6 No. 7
(13)	Able to understand and calculate the average lighting level in the work area.	Natural and Artificial Lighting	LectureDemonstrationDiscussionQuestions and answers	Quiz	1. Atti tude Knowledge	RU No. 4 No. 8
(14)	1. Able to understand and explain ho w to calculate SP L (Sound	1. The level of intensity (So und Pressure Level) 2. Isolation B eep (Sound	- Lecture - Demonstration - Discussion - Questions and answers	Quiz	3. Atti tude Knowledge	RU No. 4 No. 8

Week	Expected Competency	Study Material	Teaching Method and Strategy	Assignment	Assessment Criteria/ Indicator	Reference
	Pressure	Isolation)				
	Level).					
	2. Being					
	able					
	to complete th					
	e					
	exercises abou					
	t a matter					
	of calculating					
	the SPL					
	(Sound					
	Pressure					
	Level).					
	3. Being					
	able to understand					
	and explain ho w					
	to calculate Is					
	olation Beep					
	(Sound					
	Isolation)					
	- Able to complete the					
	exercises about a					
	matter of Lectures					
	- Demonstration					
	- Discussion					
	Tanya replied calculate Is					
	olation Beep (Sound					
	Isolation)					
(15)	1. eing able	5. Time boom (<i>Rever</i>	- Lecture	Quiz	1. Attitude	RU
	to understand and expl	beration Time)	- Demonstration		Knowledge	No. 4
	ain how to calculate	Space form	- Discussion			No. 8
	the time boom (Rever		- Questions and answers			

Week	Expected Competency	Study Material	Teaching Method and Strategy	Assignment	Assessment Criteria/ Indicator	Reference
	beration Time)					
	2. Being able					
	to complete the					
	exercises about a					
	matter of counting the time boom (<i>Rever</i>					
	beration Time)					
	3. Able					
	to understand and expl					
	ain how to calculate					
	the shape of space					
	Being able					
	to complete the					
	exercises about a					
	matter of calculating					
	the shape of the room					
(16)	Final exam					

Notes:

Correlation between CLO, PLO and Assessment Methods

	Accorment	Weigh		LO-1			LO-2			LO-4			CPL-5			CPL-6	
	Assesment	t (%)	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
1	Quiz 1	30															
2	Quiz 2																

3	Quiz 3									
4	UTS UAS	30								
5	UAS	30								
6										
7										

Presence	10								
TOTAL	100								

Assesment Components

Mid-Semester Exam : 30 %

Final Exam : 30 %

Assignment : 30%

Reports : 10%

Total : 100 %

Description of Assessment Level

	Excellent	Good	Satisfy	Fail
Description	80-100	70-79	51-69	>50
Formulation	90-100	70-89	51-69	>50
Calculation	90-100	70-89	51-69	>50

Analyzis	00 100	70.00	51.60	> 50
		70-89	51-69	> > > 1
Allalysis	70-100	70-07	31-07	> 50

Assessment System

Score Range	Grade Letter	Grade Point	Notes	Score Range	Grade Letter	Grade Point	Notes
85 – 100	A	4.0	Exceptional	55 - 59	С	2.0	Quite Satisfactory
80 - 84	A-	3.6	Excellent	50 - 54	C-	1.6	Poor
75 – 79	B+	3.3	Very Good	40 - 49	D	1.0	Very Poor
70 - 74	В	3.0	Good	≤ 39	E	0.0	Fail
65 - 69	B-	2.6	Fairly Good	-	T	-	Delayed
60 - 64	C+	2.3	Satisfactory				

KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN

UNIVERSITAS NEGERI PADANG JURUSAN TEKNIK BANGUNAN

Alamat: Jl. Prof. Dr. Hamka, Kampus UNP Air Tawar, Padang 25131 Telp. (0751) 7055644, Fax (0751) 7055628, website: www.ft.unp.ac.id, e-mail: info@ft.unp.ac.id

MID-SEMESTER EXAM

Course : Engineering Physics

Code / Credits : SIP1.52.1004 Type of Exam : Open Book

Lecturer : Drs. Azwar Inra, M.Pd., Annisa Prita Melinda, ST., MT., Rizky Indra Utama ST.,

MT., M.Pd.T.

Time Allocation : 90 minutes

Maximum Grade : 30 %

The results of sieve analysis of aggregate are given below:

NO	SOAL	ВОВОТ	
1	Mention the kinds of principal quantities and their units!		
2	How is the decrease from the amount of Kg.M / s?		
3	Two kinds of substance A and B will be mixed, the mass of substance A is 1000 gr and the density of substance A is 2.5 gr / cm 3 . The mass of substance B is 1800 grams and the density of substance B = 2gr / cm 3 . What is the density of the mixture?	10	
4	A bridge through which a sand truck can hold objects with a mass of 7 tons. How many cubic meters of sand can the car carry, if the mass of the car = 2 tons. While the relative density of sand = 2 ?		
5	A measuring cup filled with a certain volume of water. A stone incorporated into the glass measuring it so that its volume climbed into a 70 cm3. If you know the mass of the stone is 100 grams and the density of the stone is 5 grams / cm3. Determine the initial volume before entering the stone!	15	
6	A concrete plate has a size of 10 cm x 3 mx 3 m. Calculate the mass of the plate if the concrete $SG = 2.4$.!	10	
7	A monument measuring 0.5 x 1 x 2 m, made of concrete with a density of 2400 kg / m 3 . Calculate how much pressure the monument exerts on the foundation. Take $g = 10$ m / s 2	10	
8	A diver diving to a depth of 3 m, the mass of the type of water, 1,000 kg/m 3 , the constant of gravity at the point that the 10 N/kg. The amount of hydrostatic pressure is N/m 2	10	
9	A connected vessel filled with water and oil . Which has a water mass of 1 g / cm 3 then the density of oil is 0.8 g / cm 3 . If the high- surface water from the boundary oil 10 cm, the high level of oil is	15	
10	An object has a weight of 50 N, then when it is weighed in water it weighs only 45 N, then the upward force that carries the object is as large as N.	10	

KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN

UNIVERSITAS NEGERI PADANG JURUSAN TEKNIK BANGUNAN

Alamat: Jl. Prof. Dr. Hamka, Kampus UNP Air Tawar, Padang 25131 Telp. (0751) 7055644, Fax (0751) 7055628, website: www.ft.unp.ac.id, e-mail: info@ft.unp.ac.id

FINAL EXAM

Course : Engineering Physics

Code / Credits : SIP1.52.1004 Type of Exam : Open Book

Lecturer : Drs. Azwar Inra, M.Pd., Annisa Prita Melinda, ST., MT., Rizky Indra Utama ST.,

MT., M.Pd.T.

Time Allocation : 90 minutes Maximum Grade : 30 %

The results of sieve analysis of aggregate are given below:

	e results of sieve analysis of aggregate are given below:				
NO	SOAL	BOBOT			
1	A steel rod with a diameter of 20 mm and a length of 0.5 meters, is subjected to a tensile				
	load of 25 kN, so its length becomes 0.505 meters. Determine the stress and strain that				
	occurs in the rod				
2		10			
	For casting a concrete floor in a two-story building, a bucket is used as illustrated. If known:				
	Rope length = 3 m				
	Rope diameter = 1 cm				
	E rope = 5.109 N / m2				
	Density of concrete = 2400 kg / m3				
	Calculate the added length of the rope.				
	V				
3		10			
3	Sis: The walls are as pictured	10			
	The thickness of the plaster $= 2 \text{ cm}$				
	Thick b ata = 11 cm				
	External air conductivity = 3 4 W / m ²⁰ C				
	The conductivity of air in = $8 \text{ W} / \text{m}^{20} \text{C}$				
	Thermal conductivity plaster = 0. 65 W / m °C				
	Thermal conductivity brick = 0.8 W / m °C				
	Dit: a. Outline Desc alaran temperature on the wall, if the temperature outside				
	$=38 {}_{\circ}\text{C}$, in the $=13 {}_{\circ}\text{C}$				
	b. Check if there is condensation on the walls (draw the dew point line), if				
	rv plaster = 45				
	brick $rv = 30$				
4	1. Dik: Wall	10			
	The thickness of the plaster $= 2 \text{ cm}$				
	Brick thickness = 11 c m				
	External air conductivity = 4X.Y W / m ²⁰ C				
	The conductivity of air in = $1Y \cdot X \cdot W / m^{20}C$				
	Thermal conductivity of plaster = 0.6X W / m °C				
	Thermal conductivity of brick = 0.8Y W / m °C				
	Dit: 1. Temperature propagation line on the wall, if Δ T = 2 X $^{\circ}$ C				

	Sis; Temperatures in the outer 3X °C	
	Temperatures in the 2Y °C	
	Tek vapor in the outside = 36XY Pa	
	Tek Steam in the = 23YX Pa	
	DIT: 2. G ambarkan dew point line	
5	A room measuring 5m x 5m or (16 feet x 16 feet), 3m (10 feet) high. Insulated	1 0
	(coincide with another room), $I = 10$. The long wall faces east. $E = 17$. BTU	
	needs it is?	
6	An incandescent lamp was hung 2 m above the table. The intensity of the light down	10
	is equal to 480 cd. Determine the intensity of illumination on the surface of	
	the table, upright straight under the lights.	
7	A lamp hung right with a height of 8 m right diatastitik apada a field of	10
	work. Lights that give a flux of light of 1200 lumens to the	
	whole direction. How strong illumination at points A and B if the distances A and	
	B of 6 m?	
8	A light source emits 500 cd towards the screen which is located 5	10
	m from the light source. How derajadkah screen that should be rotated so that the	
	intensity of illumination thereon equal to 10 lux?	
9	In a work shop there are two pieces of machinery saws with	1 0
	IT together, ie both 70 dB. What is IT the engine when turned on simultaneously?	
10	In in a work shop there are four pieces of the machine, each having IT Sebes a r: 100	10
	dB, 91 dB, 90 dB and 89 dB. Calculate how IT	
	are generated to four machines that , when turned on simultaneously ?	